个性化文献订阅>期刊> ACS CHEMICAL BIOLOGY
 

Inhibition of Biocatalysis in [Fe-Fe] Hydrogenase by Oxygen: Molecular Dynamics and Density Functional Theory Calculations

  作者 HONG GONGYI; PACHTER RUTH  
  选自 期刊  ACS CHEMICAL BIOLOGY;  卷期  2012年7-7;  页码  1268-1275  
  关联知识点  
 

[摘要]Designing O-2-tolerant hydrogenases is a major challenge in applying [Fe-Fe]H(2)ases for H-2 production. The inhibition involves transport of oxygen through the enzyme to the H-cluster, followed by binding and subsequent deactivation of the active site. To explore the nature of the oxygen diffusion channel for the hydrogenases from Desulfovibrio desulfuricans (Dd) and Clostridium pasteurianum (Cp), empirical molecular dynamics simulations were performed. The dynamic nature of the oxygen pathways in Dd and Cp was elucidated, and insight is provided, in part, into the experimental observation on the difference of oxygen inhibition in Dd and the hydrogenase from Clostridium acetobutylicum (Ca, assumed homologous to Cp). Further, to gain an understanding of the mechanism of oxygen inhibition of the [Fe-Fe]H(2)ase, density functional theory calculations of model compounds composed of the H-cluster and proximate amino acids are reported. Confirmation of the experimentally based suppositions on inactivation by oxygen at the [2Fe](H) domain is provided, validating the model compounds used and oxidation state assumptions, further explaining the mode of damage. This unified approach provides insight into oxygen diffusion in the enzyme, followed by deactivation at the H-cluster.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内