个性化文献订阅>期刊> Proceedings of the National Academy of Sciences of the United States of America
 

Shaggy/glycogen synthase kinase 3 beta and phosphorylation of Sarah/regulator of calcineurin are essential for completion of Drosophila female meiosis

  作者 Takeo, S; Swanson, SK; Nandanan, K; Nakai, Y; Aigaki, T; Washburn, MP; Florens, L; Hawley, RS  
  选自 期刊  Proceedings of the National Academy of Sciences of the United States of America;  卷期  2012年109-17;  页码  6382-6389  
  关联知识点  
 

[摘要]The Ca2+/Calmodulin-dependent phosphatase calcineurin is essential for exit from meiotic arrest at metaphases I and II in Drosophila and Xenopus oocytes. We previously found that Sarah, the Drosophila homolog of regulator of calcineurin, acts as a positive regulator of calcineurin and is required to complete anaphase I of female meiosis. Here, we undertook biochemical approaches, including MS and posttranslational modification analyses, to better understand the mechanism by which Sarah regulates calcineurin. A search for phosphorylated residues revealed that Sarah is highly phosphorylated at Ser100, Thr102, and Ser219 in both ovaries and activated eggs and that Ser215 is phosphorylated only in activated eggs. Functional analyses using mutant forms of Sarah showed that phosphorylation at Ser215, a consensus phosphorylation site for glycogen synthase kinase 3 beta (GSK-3 beta)and its priming kinase site Ser219, are essential for Sarah function. Furthermore, germ-line clones homozygous for a null allele of shaggy ( Drosophila GSK-3 beta) both fail to complete meiosis and lack phosphorylation of Sarah at Ser215, suggesting that the phosphorylation of Sarah by Shaggy/GSK-3 beta is required to complete meiosis. Our findings suggest a mechanism in which Shaggy/GSK-3 beta activates calcineurin through Sarah phosphorylation on egg activation in Drosophila.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内