个性化文献订阅>期刊> Journal of Biological Chemistry
 

Genome-wide Repression of NF-kappa B Target Genes by Transcription Factor MIBP1 and Its Modulation by O-Linked beta-N-Acetylglucosamine (O-GlcNAc) Transferase

  作者 Iwashita, Y; Fukuchi, N; Waki, M; Hayashi, K; Tahira, T  
  选自 期刊  Journal of Biological Chemistry;  卷期  2012年287-13;  页码  9887-9900  
  关联知识点  
 

[摘要]The transcription factor c-MYC intron binding protein 1 (MIBP1) binds to various genomic regulatory regions, including intron 1 of c-MYC. This factor is highly expressed in postmitotic neurons in the fetal brain and may be involved in various biological steps, such as neurological and immunological processes. In this study, we globally characterized the transcriptional targets of MIBP1 and proteins that interact with MIBP1. Microarray hybridization followed by gene set enrichment analysis revealed that genes involved in the pathways downstream of MYC, NF-kappa B, and TGF-beta were down-regulated when HEK293 cells stably overexpressed MIBP1. In silico transcription factor binding site analysis of the promoter regions of these down-regulated genes showed that the NF-kappa B binding site was the most overrepresented. The up-regulation of genes known to be in the NF-kappa B pathway after the knockdown of endogenous MIBP1 in HT1080 cells supports the view that MIBP1 is a down-regulator of the NF-kappa B pathway. We also confirmed the binding of the MIBP1 to the NF-kappa B site. By immunoprecipitation and mass spectrometry, we detected O-linked beta-N-acetylglucosamine (O-GlcNAc) transferase as a prominent binding partner of MIBP1. Analyses using deletion mutants revealed that a 154-amino acid region of MIBP1 was necessary for its O-GlcNAc transferase binding and O-GlcNAcylation. A luciferase reporter assay showed that NF-kappa B-responsive expression was repressed by MIBP1, and stronger repression by MIBP1 lacking the 154-amino acid region was observed. Our results indicate that the primary effect of MIBP1 expression is the down-regulation of the NF-kappa B pathway and that this effect is attenuated by O-GlcNAc signaling.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内