个性化文献订阅>期刊> OPTICS EXPRESS
 

Light trapping by backside diffraction gratings in silicon solar cells revisited

  作者 Wellenzohn, M; Hainberger, R  
  选自 期刊  OPTICS EXPRESS;  卷期  2012年20-1;  页码  A20-A27  
  关联知识点  
 

[摘要]This numerical study investigates the influence of rectangular backside diffraction gratings on the efficiency of silicon solar cells. Backside gratings are used to diffract incident light to large propagation angles beyond the angle of total internal reflection, which can significantly increase the interaction length of long wavelength photons inside the silicon layer and thus enhance the efficiency. We investigate the influence of the silicon thickness on the optimum grating period and modulation depth by a simulation method which combines a 2D ray tracing algorithm with rigorous coupled wave analysis (RCWA) for calculating the grating diffraction efficiencies. The optimization was performed for gratings with period lengths ranging from 0.25 mu m to 1.5 mu m and modulation depths ranging from 25 nm to 400 nm under the assumption of normal light incidence. This study shows that the achievable efficiency improvement of silicon solar cells by means of backside diffraction gratings strongly depends on the proper choice of the grating parameters for a given silicon thickness. The relationship between the optimized grating parameters resulting in maximum photocurrent densities and the silicon thickness is determined. Moreover, the thicknesses of silicon solar cells with and without optimized backside diffraction gratings providing the same photocurrent densities are compared. (C)2011 Optical Society of America

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内