个性化文献订阅>期刊> Journal Of Vacuum Science & Technology B
 

Large-area suspended graphene on GaN nanopillars - art. no. 060601

  作者 Lee, C; Kim, BJ; Ren, F; Pearton, SJ; Kim, J  
  选自 期刊  Journal Of Vacuum Science & Technology B;  卷期  2011年29-6;  页码  60601-60601  
  关联知识点  
 

[摘要]The authors have demonstrated large-area suspended graphene on GaN nanopillars predefined by nanosphere lithography and inductively coupled plasma etching. The graphene was successfully suspended over large areas without ripples and corrugations. Scanning electron microscopy, atomic force microscopy and micro-Raman spectroscopy were used to characterize the properties of the suspended graphene on nanopillars. The thermal properties of the suspended and supported graphene were investigated by varying the underlying GaN nanopilllar geometries from flat-top to sharp-cone morphologies and heating the resulting structures via irradiation with laser powers of 1.53 mW, 8.03 mW, and 16.19 mW. The heat transfer was effective even when the contact area between the suspended graphene and the supporting substrate was small, due to the high thermal conductivities of graphene and GaN. The extremely high thermal conductivity of the graphene can improve the thermal management in GaN-based high power electronic and optoelectronics devices, a critical factor for their long-term reliability. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3654042]

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内