个性化文献订阅>期刊> Biochemistry
 

Hydroxylamine Reduction to Ammonium by Plant and Cyanobacterial Hemoglobins

  作者 Sturms, R; DiSpirito, AA; Fulton, DB; Hargrove, MS  
  选自 期刊  Biochemistry;  卷期  2011年50-50;  页码  10829-10835  
  关联知识点  
 

[摘要]Plants often face hypoxic stress as a result of flooding and waterlogged soils. During these periods, they must continue ATP production and nitrogen metabolism if they are to survive. The normal pathway of reductive nitrogen assimilation in non-legumes, nitrate, and nitrite reductase can be inhibited during low oxygen conditions that are associated with the buildup of toxic metabolites such as nitrite and nitric oxide, so the plant must also have a means of detoxifying these molecules. Compared to animal hemoglobins, plant and cyanobacterial hemoglobins are adept at reducing nitrite to nitric oxide under anaerobic conditions. Here we test their abilities to reduce hydroxylamine, a proposed intermediate of nitrite reductase, under anaerobic conditions. We find that class 1 rice nonsymbiotic hemoglobin (rice nsHb1) and the hemoglobin from the cyanobacterium Synechocystis (SynHb) catalyze the reduction of hydroxylamine to ammonium at rates 100-2500 times faster than animal hemoglobins including myoglobin, neuroglobin, cytoglobin, and blood cell hemoglobin. These results support the hypothesis that plant and cyanobacterial hemoglobins contribute to anaerobic nitrogen metabolism in support of anaerobic respiration and survival during hypoxia.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内