个性化文献订阅>期刊> Biochemical and Biophysical Research Communications
 

High fat diet induced insulin resistance and glucose intolerance are gender-specific in IGF-1R heterozygous mice

  作者 Garg, N; Thakur, S; McMahan, CA; Adamo, ML  
  选自 期刊  Biochemical and Biophysical Research Communications;  卷期  2011年413-3;  页码  476-480  
  关联知识点  
 

[摘要]Interactions between genes and environment play a critical role in the pathogenesis of type 2 diabetes. Low birth weight, due to genetic and environmental variables affecting fetal growth, is associated with increased susceptibility to the development of type 2 diabetes and metabolic disorders in adulthood. Clinical studies have shown that polymorphisms in the Insulin-like growth factor 1 (IGF-1) gene or heterozygous mutations in IGF-1 and IGF-1 receptor (IGF-1R) genes, resulting in reduced IGF-1 action, are associated with low birth weight and post-natal growth. Mice lacking one of the IGF-1R alleles (Igf1r(+/-)) exhibit a 10% reduction in post-natal growth, and develop glucose intolerance (males) and insulin resistance (males and females) as they age. To investigate whether adverse environmental factors could accelerate the onset of the metabolic syndrome, we conducted a short duration intervention of high fat diet (HFD) feeding in male and female Igf1r(+/-) and wild-type (WT) control mice. The HFD resulted in insulin resistance, hyperglycemia, and impaired glucose tolerance in males of both genotypes whereas in females exacerbated diabetes was observed only in the Igf1r(+/-) genotype, thus suggesting a sexual dimorphism in the influence of obesity on the genetic predisposition to diabetes caused by reduced IGF-1 action. (C) 2011 Elsevier Inc. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内