个性化文献订阅>期刊> Oncogene
 

HGF-independent potentiation of EGFR action by c-Met

  作者 Dulak, AM; Gubish, CT; Stabile, LP; Henry, C; Siegfried, JM  
  选自 期刊  Oncogene;  卷期  2011年30-33;  页码  3625-3635  
  关联知识点  
 

[摘要]The c-Met receptor is a potential therapeutic target for non-small cell lung cancer (NSCLC). Signaling interactions between c-Met and the mutant epidermal growth factor receptor (EGFR) have been studied extensively, but signaling intermediates and biological consequences of lateral signaling to c-Met in EGFR wild-type tumors are minimally understood. Our observations indicate that delayed c-Met activation in NSCLC cell lines is initiated by wild-type EGFR, the receptor most often found in NSCLC tumors. EGFR ligands induce accumulation of activated c-Met, which begins at 8 h and continues for 48 h. This effect is accompanied by an increase in c-Met expression and phosphorylation of critical c-Met tyrosine residues without activation of mitogen-activated protein kinase (MAPK) or Akt. Gene transcription is required for delayed c-Met activation; however, phosphorylation of c-Met by EGFR occurs without production of hepatocyte growth factor (HGF) or another secreted factor, supporting a ligand-independent mechanism. Lateral signaling is blocked by two selective c-Met tyrosine kinase inhibitors (TKIs), PF2341066 and SU11274, or with gefitinib, an EGFR TKI, suggesting kinase activity of both receptors is required for this effect. Prolonged c-Src phosphorylation is observed, and c-Src pathway is essential for EGFR to c-Met communication. Pretreatment with pan-Src family kinase inhibitors, PP2 and dasatinib, abolishes delayed c-Met phosphorylation. A c-Src dominant-negative construct reduces EGF-induced c-Met phosphorylation compared with control, further confirming a c-Src requirement. Inhibition of c-Met with PF2341066 and siRNA decreases EGF-induced phenotypes of invasion by similar to 86% and motility by similar to 81%, suggesting that a novel form of c-Met activation is utilized by EGFR to maximize these biological effects. Combined targeting of c-Met and EGFR leads to increased xenograft antitumor activity, demonstrating that inhibition of downstream and lateral signaling from the EGFR-c-Src-c-Met axis might be effective in treatment of NSCLC. Oncogene (2011) 30, 3625-3635; doi:10.1038/onc.2011.84; published online 21 March 2011

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内