个性化文献订阅>期刊> APPLIED OPTICS
 

Penetration depth of linear polarization imaging for two-layer anisotropic samples

  作者 Liao, R; Zeng, N; Li, DZ; Yun, TL; He, YH; Ma, H  
  选自 期刊  APPLIED OPTICS;  卷期  2011年50-23;  页码  4681-4687  
  关联知识点  
 

[摘要]Polarization techniques can suppress multiply scattering light and have been demonstrated as an effective tool to improve image quality of superficial tissues where many cancers start to develop. Learning the penetration depth behavior of different polarization imaging techniques is important for their clinical applications in diagnosis of skin abnormalities. In the present paper, we construct a two-layer sample consisting of isotropic and anisotropic media and examine quantitatively using both experiments and Monte Carlo simulations the penetration depths of three different polarization imaging methods, i.e., linear differential polarization imaging (LDPI), degree of linear polarization imaging (DOLPI), and rotating linear polarization imaging (RLPI). The results show that the contrast curves of the three techniques are distinctively different, but their characteristic depths are all of the order of the transport mean free path length of the top layer. Penetration depths of LDPI and DOLPI depend on the incident polarization angle. The characteristic depth of DOLPI, and approximately of LDPI at small g, scales with the transport mean free path length. The characteristic depth of RLPI is almost twice as big as that of DOLPI and LDPI, and increases significantly as g increases. (C) 2011 Optical Society of America

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内