个性化文献订阅>期刊> Journal of controlled release
 

Trilysinoyl oleylamide-based cationic liposomes for systemic co-delivery of siRNA and an anticancer drug

  作者 Shim, G; Han, SE; Yu, YH; Lee, S; Lee, HY; Kim, K; Kwon, IC; Park, TG; Kim, YB; Choi, YS; Kim, CW; Oh, YK  
  选自 期刊  Journal of controlled release;  卷期  2011年155-1;  页码  60-66  
  关联知识点  
 

[摘要]Oligolysine-based cationic lipid derivatives were synthesized for delivery of siRNA, and formulated into cationic liposomes. Among various oligolysine-based lipid derivatives differing in lysine residue number and lipid moiety, trilysinoyl oleylamide (TLO)-based liposomes (TLOL) showed the highest delivery efficiency combined with minimal cytotoxicity. Delivery of siRNA using TLOL silenced target genes both in vitro and in vivo. In green fluorescent protein (GFP)-expressing tumor tissue, a significant reduction of fluorescence was observed after intratumoral administration of siGFP using TLOL compared with control siGL2. Intravenous administration of siMcl1 employing pegylated TLOL (pTLOL) reduced the expression of human Mcl1 protein in KB-xenografted tumor tissue. Despite the reduction in target protein Mcl1 expression following such systemic delivery, tumor growth was only slightly reduced compared to a siGL2-treated control group. To potentiate the anticancer activity of siMcl1, the anticancer drug suberoylanilide hydroxamic acid (SAHA) was additionally encapsulated in pTLOL After intravenous administration of siMcl1 using SAHA-loaded pTLOL (pSTLOL), a significant reduction in tumor growth was observed compared to that seen in animals treated with free SAHA or siGL2 complexed with pSTLOL. The results indicate that pTLOL could be further developed as a systemic delivery system for synergistic anticancer siRNA and a drug. (C) 2010 Elsevier B.V. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内