个性化文献订阅>期刊> Biochemical Journal
 

AW551984: a novel regulator of cardiomyogenesis in pluripotent embryonic cells

  作者 Yasuda, S; Hasegawa, T; Hosono, T; Satoh, M; Watanabe, K; Ono, K; Shimizu, S; Hayakawa, T; Yamaguchi, T; Suzuki, K; Sato, Y  
  选自 期刊  Biochemical Journal;  卷期  2011年437-Part 2;  页码  345-355  
  关联知识点  
 

[摘要]An understanding of the mechanism that regulates the cardiac differentiation of pluripotent stem cells is necessary for the effective generation and expansion of cardiomyocytes as cell therapy products. In the present study, we have identified genes that modulate the cardiac differentiation of pluripotent embryonic cells. We isolated P19CL6 cell sublines that possess distinct properties in cardiomyogenesis and extracted 24 CMR (cardiomyogenesis-related candidate) genes correlated with cardiomyogenesis using a transcriptome analysis. Knockdown of the CMR genes by RNAi (RNA interference) revealed that 18 genes influence spontaneous contraction or transcript levels of cardiac marker genes in EC (embryonal carcinoma) cells. We also performed knockdown of the CMR genes in mouse ES (embryonic stem) cells and induced in vitro cardiac differentiation. Three CMR genes, AW551984, 2810405K02Rik (RIKEN cDNA 2810405K02 gene) and Cd302 (CD302 antigen), modulated the cardiac differentiation of both EC cells and ES cells. Depletion of AW551984 attenuated the expression of the early cardiac transcription factor Nkx2.5 (NK2 transcription factor related locus 5) without affecting transcript levels of pluripotency and early mesoderm marker genes during ES cell differentiation. Activation of Wnt/beta-catenin signalling enhanced the expression of both AW551984 and Nkx2.5 in ES cells during embryoid body formation. Our findings indicate that AW551984 is a novel regulator of cardiomyogenesis from pluripotent embryonic cells, which links Wnt/beta-catenin signalling to Nkx2.5 expression.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内