个性化文献订阅>期刊> RENEWABLE ENERGY
 

Comparison of energy and exergy analysis of fossil plant, ground and air source heat pump building heating system

  作者 Lohani, SP; Schmidt, D  
  选自 期刊  RENEWABLE ENERGY;  卷期  2010年35-6;  页码  1275-1282  
  关联知识点  
 

[摘要]The energy and exergy flow for a space heating systems of a typical residential building of natural ventilation system with different heat generation plants have been modeled and compared. The aim of this comparison is to demonstrate which system leads to an efficient conversion and supply of energy/exergy within a building system. The analysis of a fossil plant heating system has been done with a typical building simulation software IDA-ICE. A zone model of a building with natural ventilation is considered and heat is being supplied by condensing boiler. The same zone model is applied for other cases of building heating systems where power generation plants are considered as ground and air source heat pumps at different operating conditions. Since there is no inbuilt simulation model for heat pumps in IDA-ICE, different COP curves of the earlier studies of heat pumps are taken into account for the evaluation of the heat pump input and output energy. The outcome of the energy and exergy flow analysis revealed that the ground source heat pump heating system is better than air source heat pump or conventional heating system. The realistic and efficient system in this study "ground source heat pump with condenser inlet temperature 30 degrees C and varying evaporator inlet temperature" has roughly 25% less demand of absolute primary energy and exergy whereas about 50% high overall primary coefficient of performance and overall primary exergy efficiency than base case (conventional system). The consequence of low absolute energy and exergy demands and high efficiencies lead to a sustainable building heating system. (C) 2009 Elsevier Ltd. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内