个性化文献订阅>期刊> ADVANCED FUNCTIONAL MATERIALS
 

Large-Area Fabrication of Periodic Arrays of Nanoholes in Metal Films and Their Application in Biosensing and Plasmonic-Enhanced Photovoltaics

  作者 Menezes, JW; Ferreira, J; Santos, MJL; Cescato, L; Brolo, AG  
  选自 期刊  ADVANCED FUNCTIONAL MATERIALS;  卷期  2010年20-22;  页码  3918-3924  
  关联知识点  
 

[摘要]Plasmonics is a fast developing research area with a great potential for practical applications. However, the implementation of plasmonic devices requires low cost methodologies for the fabrication of organized metallic nanostructures that covers a relative large area (similar to 1 cm(2)). Here the patterning of periodic arrays of nanoholes (PANHs) in gold films by using a combination of interference lithography, metal deposition, and lift off is reported. The setup allows the fabrication of periodic nanostructures with hole diameters ranging from 110 to 1000 rim, for 450 and 1800 nm of periodicity, respectively. The large areas plasmonic substrates consist of 2 cm x 2 cm gold films homogeneously covered by nanoholes and gold films patterned with a regular microarray of 200 mu m diameter circular patches of PANHs. The microarray format is used for surface plasmon resonance (SPR) imaging and its potential for applications in multiplex biosensing is demonstrated. The gold films homogeneously covered by nanoholes are useful as electrodes in a thin layer organic photovoltaic. This is first example of a large area plasmonic solar cell with organized nanostructures. The fabrication approach reported here is a good candidate for the industrial-scale production of metallic substrates for plasmonic applications in photovoltaics and biosensing.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内