个性化文献订阅>期刊> Journal of Pharmacology and Experimental Therapeutics
 

Role of Cannabinoid Receptor Type 1 Desensitization in Greater Tetrahydrocannabinol Impairment of Memory in Adolescent Rats

  作者 Moore, NLT; Greenleaf, ALR; Acheson, SK; Wilson, WA; Swartzwelder, HS; Kuhn, CM  
  选自 期刊  Journal of Pharmacology and Experimental Therapeutics;  卷期  2010年335-2;  页码  294-301  
  关联知识点  
 

[摘要]Adolescence is a well defined developmental period during which marijuana use is common. However, little is known about the response to marijuana in adolescents compared with adults. We have shown previously that adolescent rats are more impaired than adults by Delta(9)-tetrahydrocannabinol (THC), the main psychoactive compound in marijuana, in a spatial learning task, but the mechanism responsible for this differential impairment is not understood. We determined the role of THC tolerance and cannabinoid receptor type 1 (CB1) regulation in THC-induced spatial learning impairment in adolescent and adult rats. We measured the development of tolerance to THC-induced learning impairment in adolescent (postnatal days 30-35) and adult (postnatal days 70-75) rats. We pre-treated them for 5 days with 10 mg/kg THC, and then evaluated the effects of vehicle or THC treatment on learning during training in the Morris water maze. We also determined CB1 number and functional coupling in the hippocampus of adolescents and adults. Finally, we measured the time course of hippocampal CB1 desensitization in adolescents and adults during treatment with 10 mg/kg THC or vehicle. Our results indicate that adults, but not adolescents, become tolerant to the effects of THC during water maze training after 5 days of pretreatment. CB1s in adolescent hippocampus are less functionally coupled to G proteins and desensitize more slowly in response to THC treatment than those of adults. THC may impair learning in adolescents more than in adults because of delayed activation of cellular homeostatic adaptive mechanisms underlying cannabinoid tolerance in the hippocampus.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内