个性化文献订阅>期刊> Archives of Biochemistry and Biophysics
 

Suppression mechanisms of flavonoids on aryl hydrocarbon receptor-mediated signal transduction

  作者 Mukai, R; Shirai, Y; Saito, N; Fukuda, I; Nishiumi, S; Yoshida, K; Ashida, H  
  选自 期刊  Archives of Biochemistry and Biophysics ;  卷期  2010年501-S1;  页码  134-141  
  关联知识点  
 

[摘要]

The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that mediates biological and toxicological effects by binding to its agonists such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Previously we demonstrated that flavonoids suppressed the TCDD-induced DNA-binding activity of the AhR in a structure-dependent manner. In this study, we investigated the mechanisms by which flavonoids suppressed the AhR-mediated signal transduction in mouse hepatoma Hepa-1c1c7 cells. Flavones and flavonols suppressed the TCDD-induced nuclear translocation of the AhR and dissociation of its partner proteins, heat shock protein 90 and X-associated protein 2, whereas flavanones and catechins did not. Flavonoids of all these four subclasses suppressed the phosphorylation of both AhR and Arnt and the formation of a heterodimer consisting of these proteins. Since certain flavonoids are known to inhibit mitogen-activated protein kinases (MAPKs), we confirmed the contribution of MAPK/ERK kinase (MEK) to the AhR-mediated signal transduction by using U0126, an inhibitor of MEK1/2. U0126 suppressed TCDD-induced phosphorylation of the AhR and Arnt followed by the DNA-binding activity of the AhR. Flavanones and catechins suppressed the TCDD-induced phosphorylation of ERK1/2. The inhibition of MEK/ERK phosphorylation is one of the mechanisms by which flavanones and catechins suppress the AhR-mediated signal transduction in Hepa-1c1c7 cells. (C) 2010 Elsevier Inc. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内