个性化文献订阅>期刊> BIOMATERIALS
 

The use of superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds to promote cell adhesion and the differentiation of human fetal neural precursors

  作者 Kubinova, S; Horak, D; Kozubenko, N; Vanecek, V; Proks, V; Price, J; Cocks, G; Sykova, E  
  选自 期刊  BIOMATERIALS;  卷期  2010年31-23;  页码  5966-5975  
  关联知识点  
 

[摘要]Modifications of poly(2-hydroxyethyl methacrylate) (PHEMA) with laminin-derived Ac-CGGASIKVAVS-OH peptide sequences have been developed to construct scaffolds that promote cell adhesion and neural differentiation. Radical copolymerization of 2-hydroxyethyl methacrylate with 2-aminoethyl methacrylate (AEMA) and ethylene dimethacrylate in the presence of ammonium oxalate crystals resulted in the formation of superporous P(HEMA-AEMA) hydrogels. They were reacted with gamma-thiobutyrolactone to yield 2-(4-sulfanylbutanamido)ethyl methacrylate (P(HEMA-AEMA)-SH) unit. The Ac-CGGASIKVAVS-OH peptide was immobilized to the sulfhydryl groups of P(HEMA-AEMA)-SH by 2,2'-dithiodipyridine linking reagent via 2-[4-(2-pyridyldisulfanyl)butanamido]ethyl methacrylate (P(HEMA-AEMA)-TPy). The adhesion and morphology of rat mesenchymal stem cells were investigated on the Ac-CGGASIKVAVS-OH-modified P(HEMA-AEMA) as well as on PHEMA, P(HEMA-AEMA)-SH and P(HEMA-AEMA)-TPy hydrogels. Superporous Ac-CGGASIKVAVS-OH-modified PHEMA scaffolds significantly increased the number of attached cells and their growth area on the hydrogel surface in the absence and in the presence of serum in the culture medium. Additionally, the Ac-CGGASIKVAVS-OH peptide supported the attachment, proliferation, differentiation and process spreading of human fetal neural stem cells during the first two weeks of expansion and contributed to the formation of a high percentage of more mature neural cells after four weeks of expansion. The Ac-CGGASIKVAVS-OH modification of superporous P(HEMA-AEMA) hydrogels improves cell adhesive properties and promotes neural stem cell differentiation. (C) 2010 Elsevier Ltd. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内