个性化文献订阅>期刊> Chemistry of Materials
 

Multilayered Semiconductor (CdS/CdSe/ZnS)-Sensitized TiO2 Mesoporous Solar Cells: All Prepared by Successive Ionic Layer Adsorption and Reaction Processes

  作者 AKSOMAITYTE GABRIELE; CHENG FEI; HECTOR ANDREW L; HYDE JASON R; LEVASON WILLIAM; REID GILLIAN; SMITH DAVID C; WILSON JAMES W; ZHANG WENJIAN  
  选自 期刊  Chemistry of Materials;  卷期  2010年22-19;  页码  5636-5643  
  关联知识点  
 

[摘要]A model semiconductor-sensitizer layer of CdSe with under- or overlayers of CdS or ZnS by pre- or postadsorption was prepared on the surface of mesoporous TiO2 films by a series of successive ionic layer adsorption and reaction (SILAR) processes in solutions containing corresponding cations and anions. The growth of each semiconductor layer was monitored by taking UV-visible absorption spectra and high-resolution transmission electron microscopy (TEM) images. The all SILAR-prepared multicomponent sensitizer consisting of CdS/CdSe/ZnS layers was evaluated in a polysulfide electrolyte solution as a redox mediator in regenerative photoelectrochemical cells. The CdS and ZnS layers with the CdSe layer sandwiched in between were found to significantly enhance photocurrents. The best photovoltaic performance was obtained froth the CdS/CdSe/ZnS-sensitizer with the ZnS layer on the top, yielding an overall power conversion efficiency of 3.44% with a mask around the active film and 3.90% with no Mask. The effect of the mask on short-circuit current (J(sc)) and overall efficiency (eta) measurements was shown to be increasingly critical in semiconductor-sensitized solar cells as they exhibit high photocurrents. The polysulfide electrolyte, which acted as an effective electron transfer mediator for CdS and/or CdSe sensitizers, was not as effective for PbS-based sensitizers prepared by the same SILAR process.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内