个性化文献订阅>期刊> EMBO journal
 

Crystal structure of the human CNOT6L nuclease domain reveals strict poly(A) substrate specificity

  作者 Wang, H; Morita, M; Yang, XN; Suzuki, T; Yang, W; Wang, JA; Ito, K; Wang, QA; Zhao, C; Bartlam, M; Yamamoto, T; Rao, ZH  
  选自 期刊  EMBO journal;  卷期  2010年29-15;  页码  2566-2576  
  关联知识点  
 

[摘要]

CCR4, an evolutionarily conserved member of the CCR4-NOT complex, is the main cytoplasmic deadenylase. It contains a C-terminal nuclease domain with homology to the endonuclease-exonuclease-phosphatase (EEP) family of enzymes. We have determined the high-resolution three-dimensional structure of the nuclease domain of CNOT6L, a human homologue of CCR4, by X-ray crystallography using the single-wavelength anomalous dispersion method. This first structure of a deadenylase belonging to the EEP family adopts a complete alpha/beta sandwich fold typical of hydrolases with highly conserved active site residues similar to APE1. The active site of CNOT6L should recognize the RNA substrate through its negatively charged surface. In vitro deadenylase assays confirm the critical active site residues and show that the nuclease domain of CNOT6L exhibits full Mg2+-dependent deadenylase activity with strict poly(A) RNA substrate specificity. To understand the structural basis for poly(A) RNA substrate binding, crystal structures of the CNOT6L nuclease domain have also been determined in complex with AMP and poly(A) DNA. The resulting structures suggest a molecular deadenylase mechanism involving a pentacovalent phosphate transition. The EMBO Journal (2010) 29, 2566-2576. doi:10.1038/emboj.2010.152; Published online 13 July 2010

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内