个性化文献订阅>期刊> Circulation Research
 

Blockade of Hsp20 Phosphorylation Exacerbates Cardiac Ischemia/Reperfusion Injury by Suppressed Autophagy and Increased Cell Death

  作者 Qian, J; Ren, XP; Wang, XH; Zhang, PY; Jones, WK; Molkentin, JD; Fan, GC; Kranias, EG  
  选自 期刊  Circulation Research;  卷期  2009年105-12;  页码  1223-1223  
  关联知识点  
 

[摘要]Rationale: The levels of a small heat shock protein (Hsp)20 and its phosphorylation are increased on ischemic insults, and overexpression of Hsp20 protects the heart against ischemia/reperfusion injury. However, the mechanism underlying cardioprotection of Hsp20 and especially the role of its phosphorylation in regulating ischemia/reperfusion-induced autophagy, apoptosis, and necrosis remain to be clarified. Objective: Herein, we generated a cardiac-specific overexpression model, carrying nonphosphorylatable Hsp20, where serine 16 was substituted with alanine (Hsp20(S16A)). By subjecting this model to ischemia/reperfusion, we addressed whether: (1) the cardioprotective effects of Hsp20 are associated with serine 16 phosphorylation; (2) blockade of Hsp20 phosphorylation influences the balance between autophagy and cell death; and (3) the aggregation pattern of Hsp20 is altered by its phosphorylation. Methods and Results: Our results demonstrated that Hsp20(S16A) hearts were more sensitive to ischemia/reperfusion injury, evidenced by lower recovery of contractile function and increased necrosis and apoptosis, compared with non-TG hearts. Interestingly, autophagy was activated in non-TG hearts but significantly inhibited in Hsp20(S16A) hearts following ischemia/reperfusion. Accordingly, pretreatment of Hsp20(S16A) hearts with rapamycin, an activator of autophagy, resulted in improvement of functional recovery, compared with saline-treated Hsp20(S16A) hearts. Furthermore, on ischemia/reperfusion, the oligomerization pattern of Hsp20 appeared to shift to higher aggregates in Hsp20(S16A) hearts. Conclusions: Collectively, these data indicate that blockade of Ser16-Hsp20 phosphorylation attenuates the cardioprotective effects of Hsp20 against ischemia/reperfusion injury, which may be attributable to suppressed autophagy and increased cell death. Therefore, phosphorylation of Hsp20 at serine 16 may represent a potential therapeutic target in ischemic heart disease. (Circ Res. 2009;105:1223-1231.)

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内