个性化文献订阅>期刊> Journal of Biological Chemistry
 

Role of Spike Protein Endodomains in Regulating Coronavirus Entry

  作者 Shulla, A; Gallagher, T  
  选自 期刊  Journal of Biological Chemistry;  卷期  2009年284-47;  页码  32725-32734  
  关联知识点  
 

[摘要]Enveloped viruses enter cells by viral glycoprotein-mediated binding to host cells and subsequent fusion of virus and host cell membranes. For the coronaviruses, viral spike (S) proteins execute these cell entry functions. The S proteins are set apart from other viral and cellular membrane fusion proteins by their extensively palmitoylated membrane-associated tails. Palmitate adducts are generally required for protein-mediated fusions, but their precise roles in the process are unclear. To obtain additional insights into the S-mediated membrane fusion process, we focused on these acylated carboxyl-terminal intravirion tails. Substituting alanines for the cysteines that are subject to palmitoylation had effects on both S incorporation into virions and S-mediated membrane fusions. In specifically dissecting the effects of endodomain mutations on the fusion process, we used antiviral heptad repeat peptides that bind only to folding intermediates in the S-mediated fusion process and found that mutants lacking three palmitoylated cysteines remained in transitional folding states nearly 10 times longer than native S proteins. This slower refolding was also reflected in the paucity of postfusion six-helix bundle configurations among the mutant S proteins. Viruses with fewer palmitoylated S protein cysteines entered cells slowly and had reduced specific infectivities. These findings indicate that lipid adducts anchoring S proteins into virus membranes are necessary for the rapid, productive S protein refolding events that culminate in membrane fusions. These studies reveal a previously unappreciated role for covalently attached lipids on the endodomains of viral proteins eliciting membrane fusion reactions.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内