个性化文献订阅>期刊> Biochemistry
 

A FRET-Based Method for Probing the Conformational Behavior of an Intrinsically Disordered Repeat Domain from Bordetella pertussis Adenylate Cyclase

  作者 Szilvay, GR; Blenner, MA; Shur, O; Cropek, DM; Banta, S  
  选自 期刊  Biochemistry;  卷期  2009年48-47;  页码  11273-11282  
  关联知识点  
 

[摘要]A better understanding of the conformational changes exhibited by intrinsically disordered proteins is necessary as we continue to unravel their myriad biological functions. In repeats in toxin (RTX) domains, calcium binding triggers the natively unstructured domain to adopt a beta roll structure. Here we present an in vitro Forster resonance energy transfer (FRET)-based method for the investigation of the conformational behavior of all RTX domain from the Bordetella pertussis adenylate cyclase consisting of mile repeat units. Equilibrium and stopped-flow FRET between fluorescent proteins, attached to the termini of the domain, were measured in an analysis of the end-to-end distance changes in the RTX domain. The method was complemented with circular dichroism spectroscopy, tryptophan fluorescence, and bis-ANS dye binding. High ionic strength was observed to decrease the calcium affinity of the RTX domain. A truncation and single amino acid mutations yielded insights into the structural determinants of beta roll formation. Mutating the conserved Asp residue in one of the nine repeats significantly reduced the affinity of the domains for calcium ions. Removal of the sequences flanking the repeat domain prevented folding, but replacing them with fluorescent proteins restored the conformational behavior, suggesting an entropic stabilization. The FRET-based method is a useful technique that complements other low-resolution techniques for investigating the dynamic conformational behavior of the RTX domain and other intrinsically disordered protein domains.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内