个性化文献订阅>期刊> Molecular and Cellular Biology
 

Fumarate Hydratase Deficiency in Renal Cancer Induces Glycolytic Addiction and Hypoxia-Inducible Transcription Factor 1 alpha Stabilization by Glucose-Dependent Generation of Reactive Oxygen Species

  作者 Sudarshan, S; Sourbier, C; Kong, HS; Block, K; Romero, VAV; Yang, YF; Galindo, C; Mollapour, M; Scroggins, B; Goode, N; Lee, MJ; Gourlay, CW; Trepel, J; Linehan, WM; Neckers, L  
  选自 期刊  Molecular and Cellular Biology;  卷期  2009年29-15;  页码  4080-4090  
  关联知识点  
 

[摘要]Hereditary leiomyomatosis and renal cell cancer (HLRCC) is an inherited cancer syndrome linked to biallelic inactivation of the gene encoding the tricarboxylic acid cycle enzyme fumarate hydratase (FH). Individuals with HLRCC are at risk to develop cutaneous and uterine leiomyomas and an aggressive form of kidney cancer. Pseudohypoxic drive-the aberrant activation of cellular hypoxia response pathways despite normal oxygen tension-is considered to be a likely mechanism underlying the etiology of this tumor. Pseudohypoxia requires the oxygen-independent stabilization of the alpha subunit of the hypoxia-inducible transcription factor (HIF-1 alpha). Under normoxic conditions, proline hydroxylation of HIF-1 alpha permits VHL recognition and subsequent targeting for proteasomal degradation. Here, we demonstrate that inactivating mutations of FH in an HLRCC-derived cell line result in glucose-mediated generation of cellular reactive oxygen species (ROS) and ROS-dependent HIF-1 alpha stabilization. Additionally, we demonstrate that stable knockdown of FH in immortalized renal epithelial cells results in ROS-dependent HIF-1 alpha stabilization. These data reveal that the obligate glycolytic switch present in HLRCC is critical to HIF stabilization via ROS generation.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内