个性化文献订阅>期刊> Journal of Micromechanics and Microengineering
 

Controlled double emulsification utilizing 3D PDMS microchannels - art. no. 065018

  作者 Chang, FC; Su, YC  
  选自 期刊  Journal of Micromechanics and Microengineering;  卷期  2008年18-6;  页码  65018-65018  
  关联知识点  
 

[摘要]This paper presents a PDMS emulsification device that is capable of generating water-in-oil-in-water double emulsions in a controlled manner. Specially designed 3D microchannels are utilized to steer the independently driven water- and oil-phase flows (especially to restrict the attachment of the middle oil-phase flow on the channel surfaces), and to break the continuous flows into monodisperse double emulsions. In addition to channel geometries and fluid flow rates, surfactants and osmotic agents are employed to facilitate the breakup process and stabilize the resulting emulsion structures. In the prototype demonstration, two-level SU-8 molds were fabricated to duplicate PDMS microstructures, which were surface treated and bonded irreversibly to form 3D microchannels. Throughout the emulsification trials, dripping was intentionally induced to generate monodisperse double emulsions with single or multiple aqueous droplets inside each oil drop. It is found that the overall and core sizes of the resulting double emulsions could be adjusted independently, mainly by varying the outer and inner fluid flow rates, respectively. As such, the presented double emulsification device could potentially realize the controllability on emulsion structure and size distribution, which is desired for a variety of biological and pharmaceutical applications.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内