个性化文献订阅>期刊> Archives of Biochemistry and Biophysics
 

NADPH-cytochrome P450 oxidoreductase from the mosquito Anopheles minimus: Kinetic studies and the influence of Leu86 and Leu219 on cofactor binding and protein stability

  作者 Sarapuist, S; Xia, CW; Misra, I; Rongnoparut, P; Kim, JJP  
  选自 期刊  Archives of Biochemistry and Biophysics ;  卷期  2008年477-1;  页码  53-59  
  关联知识点  
 

[摘要]NADPH-cytochrome c oxidoreductase from the mosquito Anopheles minimus lacking the first 55 amino acid residues was expressed in Escherichia coli. The purified enzyme loses FMN, leading to an unstable protein and subsequent aggregation. To understand the basis for the instability, we constructed single and triple mutants of L86F, L219F, and P456A, with the first two residues in the FMN domain and the third in the FAD domain. The triple mutant was purified in high yield with stoichiometries of 0.97 FMN and 0.55 FAD. Deficiency in FAD content was overcome by addition of exogenous FAD to the enzyme. Both wild-type and the triple mutant follow a two-site Ping-Pong mechanism with similar kinetic constants arguing against any global structural changes. Analysis of the single mutants indicates that the proline to alanine substitution has no impact, but that both leucine to phenylalanine substitutions are essential for FMN binding and maximum stability of the enzyme. (c) 2008 Elsevier Inc. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内