个性化文献订阅>期刊> ADVANCED FUNCTIONAL MATERIALS
 

Molecular Stacking Induced by Intermolecular C-H center dot center dot center dot N Hydrogen Bonds Leading to High Carrier Mobility in Vacuum-Deposited Organic Films

  作者 Yokoyama, D; Sasabe, H; Furukawa, Y; Adachi, C; Kido, J  
  选自 期刊  ADVANCED FUNCTIONAL MATERIALS;  卷期  2011年21-8;  页码  1375-1382  
  关联知识点  
 

[摘要]Simple bottom-up fabrication processes for molecular self-assembly have been developed for the construction of higher-order structures using organic materials, and have contributed to maximization of the potential of organic materials in chemical and bioengineering. However, their application to organic thin-film devices such as organic light-emitting diodes have not been widely considered because simple fabrication of a solid film containing an internal self-assembly structure has been regarded as difficult. Here it is shown that the intermolecular C-H center dot center dot center dot N hydrogen bonds can be simply formed even in vacuum-deposited organic films having flat interfaces. By designing the molecules containing pyridine rings properly for the intermolecular interaction, one can control the molecular stacking induced by the intermolecular hydrogen bonds. It is also demonstrated that the molecular stacking contributes to the high carrier mobility of the film. These findings provide new guidelines to improve the performance of organic optoelectronic devices and open up the possibilities for further development of organic devices with higher-order structures.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内