个性化文献订阅>期刊> ADVANCED FUNCTIONAL MATERIALS
 

Oscillatory Thermopower Waves Based on Bi(2)Te(3) Films

  作者 Walia, S; Weber, R; Latham, K; Petersen, P; Abrahamson, JT; Strano, MS; Kalantar-zadeh, K  
  选自 期刊  ADVANCED FUNCTIONAL MATERIALS;  卷期  2011年21-11;  页码  2072-2079  
  关联知识点  
 

[摘要]Exothermic chemical reactions that are coupled to Bi(2)Te(3) porous layers, which are deposited onto terracotta or alumina (Al(2)O(3)) substrates, are used to produce self-propagating thermal waves that are guided along the surface. Nitrocellulose is used as the highly reactive chemical. Bi(2)Te(3) is employed because of its large Seebeck coefficient and high electrical conductivity. For the Al(2)O(3) based structures, the thermal conduction of the substrate results in strong oscillations of the output signals. Such thermopower waves produce a power as large as 10 mW and voltages as high as 150 mV. The power per mass ratio of the developed system is quite remarkable, namely, on the order of 1 kW kg(-1). Depending on the thermal conductivity of the substrate used, the wave front average propagation velocity is either slow (ca. 0.009 m s(-1) for terracotta) or much faster (on the order of 0.4 m s(-1) for Al(2)O(3)). We have used a mathematical model based on two coupled heat transport equations, in conjunction with the chemical reaction equation, to predict the behavior of the system, which describes the average propagation velocity and the time between oscillation peaks.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内