个性化文献订阅>期刊> ADVANCED FUNCTIONAL MATERIALS
 

Simultaneous Modification of Bottom-Contact Electrode and Dielectric Surfaces for Organic Thin-Film Transistors Through Single-Component Spin-Cast Monolayers

  作者 Acton, O; Dubey, M; Weidner, T; O'Malley, KM; Kim, TW; Ting, GG; Hutchins, D; Baio, JE; Lovejoy, TC; Gage, AH; Castner, DG; Ma, H; Jen, AKY  
  选自 期刊  ADVANCED FUNCTIONAL MATERIALS;  卷期  2011年21-8;  页码  1476-1488  
  关联知识点  
 

[摘要]An efficient process is developed by spin-coating a single-component, self-assembled monolayer (SAM) to simultaneously modify the bottom-contact electrode and dielectric surfaces of organic thin-film transistors (OTFTs). This efficient interface modification is achieved using n-alkyl phosphonic acid based SAMs to prime silver bottom-contacts and hafnium oxide (HfO(2)) dielectrics in low-voltage OTFTs. Surface characterization using near edge X-ray absorption fine structure (NEXAFS) spectroscopy, X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, atomic force microscopy (AFM), and spectroscopic ellipsometry suggest this process yields structurally well-defined phosphonate SAMs on both metal and oxide surfaces. Rational selection of the alkyl length of the SAM leads to greatly enhanced performance for both n-channel (C(60)) and p-channel (pentacene) based OTFTs. Specifically, SAMs of n-octylphosphonic acid (OPA) provide both low-contact resistance at the bottom-contact electrodes and excellent interfacial properties for compact semiconductor grain growth with high carrier mobilities. OTFTs based on OPA modified silver electrode/HfO(2) dielectric bottom-contact structures can be operated using < 3V with low contact resistance (down to 700 Ohm-cm), low subthreshold swing (as low as 75 mV dec(-1)), high on/off current ratios of 107, and charge carrier mobilities as high as 4.6 and 0.8 cm(2) V(-1) s(-1), for C(60) and pentacene, respectively. These results demonstrate that this is a simple and efficient process for improving the performance of bottom-contact OTFTs.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内