个性化文献订阅>期刊> Molecular and Cellular Biology
 

Berardinelli-Seip Congenital Lipodystrophy 2/Seipin Is a Cell-Autonomous Regulator of Lipolysis Essential for Adipocyte Differentiation

  作者 Chen, WQ; Chang, B; Saha, P; Hartig, SM; Li, L; Reddy, VT; Yang, YS; Yechoor, V; Mancini, MA; Chan, L  
  选自 期刊  Molecular and Cellular Biology;  卷期  2012年32-6;  页码  1099-1111  
  关联知识点  
 

[摘要]Mutations in BSCL2 underlie human congenital generalized lipodystrophy. We inactivated Bscl2 in mice to examine the mechanisms whereby absence of Bscl2 leads to adipose tissue loss and metabolic disorders. Bscl2(-/-) mice develop severe lipodystrophy of white adipose tissue (WAT), dyslipidemia, insulin resistance, and hepatic steatosis. In vitro differentiation of both Bscl2(-/-) murine embryonic fibroblasts (MEFs) and stromal vascular cells (SVCs) reveals normal early-phase adipocyte differentiation but a striking failure in terminal differentiation due to unbridled cyclic AMP (cAMP)-dependent protein kinase A (PKA)-activated lipolysis, which leads to loss of lipid droplets and silencing of the expression of adipose tissue-specific transcription factors. Importantly, such defects in differentiation can be largely rescued by inhibitors of lipolysis but not by a gamma peroxisome proliferator-activated receptor (PPAR gamma) agonist. The residual epididymal WAT (EWAT) in Bscl2(-/-) mice displays enhanced lipolysis. It also assumes a "brown-like" phenotype with marked upregulation of UCP1 and other brown adipose tissue-specific markers. Together with decreased Pref1 but increased C/EBP beta levels, these changes highlight a possible increase in cAMP signaling that impairs terminal adipocyte differentiation in the EWAT of Bscl2(-/-) mice. Our study underscores the fundamental role of regulated cAMP/PKA-mediated lipolysis in adipose differentiation and identifies Bscl2 as a novel cell-autonomous determinant of activated lipolysis essential for terminal adipocyte differentiation.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内