个性化文献订阅>期刊> Journal of Molecular Biology
 

An Exclusive alpha/beta Code Directs Allostery in TetR-Peptide Complexes

  作者 Sevvana, M; Goetz, C; Goeke, D; Wimmer, C; Berens, C; Hillen, W; Muller, YA  
  选自 期刊  Journal of Molecular Biology;  卷期  2012年416-1;  页码  46-56  
  关联知识点  
 

[摘要]The allosteric mechanism of one of the best characterized bacterial transcription regulators, tetracycline repressor (TetR), has recently been questioned. Tetracycline binding induces cooperative folding of TetR, as suggested by recent unfolding studies, rather than switching between two defined conformational states, namely a DNA-binding-competent conformation and a non-DNA-binding conformation. Upon ligand binding, a host of near-native multiconformational structures collapse into a single, highly stabilized protein conformation that is no longer able to bind DNA. Here, structure-function studies performed with four synthetic peptides that bind to TetR and mimic the function of low-molecular-weight effectors, such as tetracyclines, provide new means to discriminate between different allosteric models. Whereas two inducing peptides bind in an extended beta-like conformation, two anti-inducing peptides form an alpha-helix in the effector binding site of TetR. This exclusive bimodal interaction mode coincides with two distinct overall conformations of TetR, namely one that is identical with induced TetR and one that mirrors the DNA-bound state of TetR. Urea-induced unfolding studies show no increase in thermodynamic stability for any of the peptide complexes, although fluorescence measurements demonstrate peptide binding to TetR. This strongly suggests that, at least for these peptide effectors, a classical two-state allosteric model best describes TetR function. (C) 2011 Elsevier Ltd. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内