个性化文献订阅>期刊> Development
 

Regulation of TGF-beta signalling by N-acetylgalactosaminyltransferase-like 1

  作者 Herr, P; Korniychuk, G; Yamamoto, Y; Grubisic, K; Oelgeschlager, M  
  选自 期刊  Development;  卷期  2008年135-10;  页码  1813-1822  
  关联知识点  
 

[摘要]The TGF-alpha superfamily of secreted signalling molecules plays a pivotal role in the regulation of early embryogenesis, organogenesis and adult tissue homeostasis. Here we report the identification of Xenopus N-acetylgalactosaminyltransferase-like 1 (xGalntl-1) as a novel important regulator of TGF-beta signalling. N-acetylgalactosaminyltransferases mediate the first step of mucin-type glycosylation, adding N-acetylgalactose to serine or threonine side chains. xGalntl-1 is expressed in the anterior mesoderm and neural crest territory at neurula stage, and in the anterior neural crest, notochord and the mediolateral spinal cord at tailbud stage. Inhibition of endogenous xGalntl-1 protein synthesis, using specific morpholino oligomers, interfered with the formation of anterior neural crest, anterior notochord and the spinal cord. Xenopus and mammalian Galntl-1 inhibited Activin as well as BMP signalling in the early Xenopus embryo and in human HEK 293T cells. Gain- and loss-of-function experiments showed that xGalntl-1 interferes with the activity of the common TGF-beta type II receptor ActR-IIB in vivo. In addition, our biochemical data demonstrated that xGalntl-1 specifically interferes with the binding of ActR-IIB to Activin-and BMP-specific type I receptors. This inhibitory activity of xGalntl-1 was dependent on mucin-type glycosylation, as it was sensitive to the chemical inhibitor benzyl-GalNAc. These studies reveal an important role of a N-acetylgalactosaminyltransferase in the regulation of TGF-beta signalling. This novel regulatory mechanism is evolutionarily conserved and, thus, might provide a new paradigm for the regulation of TGF-beta signalling in vertebrates.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内