个性化文献订阅>期刊> Journal of cell science
 

Non-canonical ubiquitin-based signals for proteasomal degradation

  作者 Kravtsova-Ivantsiv, Y; Ciechanover, A  
  选自 期刊  Journal of cell science;  卷期  2012年125-3;  页码  539-548  
  关联知识点  
 

[摘要]Regulated cellular proteolysis is mediated largely by the ubiquitin proteasome system (UPS). It is a highly specific process that is time- (e.g. cell cycle), compartment- (e.g. nucleus or endoplasmic reticulum) and substrate quality- (e.g. denatured or misfolded proteins) dependent, and allows fast adaptation to changing conditions. Degradation by the UPS is carried out through two successive steps: the substrate is covalently tagged with ubiquitin and subsequently degraded by the 26S proteasome. The accepted 'canonical' signal for proteasomal recognition is a polyubiquitin chain that is anchored to a lysine residue in the target substrate, and is assembled through isopeptide bonds involving lysine 48 of ubiquitin. However, several 'non-canonical' ubiquitin-based signals for proteasomal targeting have also been identified. These include chains anchored to residues other than internal lysine in the substrates, chains assembled through linking residues other than lysine 48 in ubiquitin, and mixed chains made of both ubiquitin and a ubiquitin-like protein. Furthermore, some proteins can be degraded following modification by a single ubiquitin (monoubiquitylation) or multiple single ubiquitins (multiple rnonoubiquitylation). Finally, some proteins can be proteasomally degraded without prior ubiquitylation (the process is also often referred to as ubiquitination). In this Commentary, we describe these recent findings and discuss the possible physiological roles of these diverse signals. Furthermore, we discuss the possible impact of this signal diversity on drug development. This article is part of a Minifocus on Ubiquitin. For further reading, please see related articles: 'Ubiquitin and SUMO in DNA repair at a glance' by Helle D. Ulrich (J. Cell Sci. 125, 249-254). 'Emerging regulatory mechanisms in ubiquitin-dependent cell cycle control' by Annamaria Mocciaro and Michael Rape (J. Cell Sci. 125, 255263). 'The role of ubiquitylation in receptor endocytosis and endosomal sorting' by Kaisa Haglund and Ivan Dikic (J. Cell Sci. 125, 265-275). 'Cellular functions of the DUBs' by Michael J. Clague et al. (J. Cell Sci. 125, 277-286). 'HECT and RING finger families of E3 ubiquitin ligases at a glance' by Meredith B. Metzger et al. (J. Cell Sol. 125, 531-537). No one can whistle a symphony alone how different ubiquitin linkages cooperate to orchestrate NF-kappa B activity' by Anna C. Schmukle and Henning Walczak (J. Cell Sci. 125, 549-559).

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内