个性化文献订阅>期刊> International Journal of Cancer
 

Phosphorylation of vasodilator-stimulated phosphoprotein Ser239 suppresses filopodia and invadopodia in colon cancer

  作者 Zuzga, DS; Pelta-Heller, J; Li, P; Bombonati, A; Waldman, SA; Pitari, GM  
  选自 期刊  International Journal of Cancer;  卷期  2012年130-11;  页码  2539-2548  
  关联知识点  
 

[摘要]In colorectal cancer, the antitumorigenic guanylyl cyclase C (GCC) signalome is defective reflecting ligand deprivation from downregulation of endogenous hormone expression. Although the proximal intracellular mediators of that signal transduction system, including cyclic guanosine monophosphate (cGMP) and cGMP-dependent protein kinase (PKG), are well characterized, the functional significance of its distal effectors remain vague. Dysregulation of ligand-dependent GCC signaling through vasodilator-stimulated phosphoprotein (VASP), an actin-binding protein implicated in membrane protrusion dynamics, drastically reduced cGMP-dependent VASP phosphorylation levels in colorectal tumors from patients. Restoration of cGMP-dependent VASP phosphorylation by GCC agonists suppressed the number and length of locomotory (filopodia) and invasive (invadopodia) actin-based organelles in human colon cancer cells. Membrane organelle disassembly reflected specific phosphorylation of VASP Ser239, the cGMP/PKG preferred site, and rapid VASP removal from tumor cell protrusions. Importantly, VASP Ser239 phosphorylation inhibited the proteolytic function of invadopodia, reflected by suppression of the cancer cell ability to digest DQ-collagen IV embedded in Matrigel. These results demonstrate a previously unrecognized role for VASP Ser239 phosphorylation, a single intracellular biochemical reaction, as an effective mechanism which opposes tumor cell shape promoting colon cancer invasion and metastasis. Reconstitution of physiological cGMP circuitry through VASP, in turn, represents an attractive targeted approach for patients with colorectal cancer.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内