个性化文献订阅>期刊> IEEE Transactions on Computers
 

Elimination of overhead operations in complex loop structures for embedded microprocessors

  作者 Kavvadias, N; Nikolaidis, S  
  选自 期刊  IEEE Transactions on Computers;  卷期  2008年57-2;  页码  200-214  
  关联知识点  
 

[摘要]Looping operations impose a significant bottleneck in achieving better computational efficiency for embedded applications. In this paper, a novel zero-overhead loop controller (ZOLC) supporting arbitrary loop structures with multiple-entry and multiple-exit nodes is described and utilized to enhance embedded RISC processors. A graph formalism is introduced for representing the loop structure of application programs, which can assist in ZOLC code synthesis. Also, a portable description of a ZOLC component which can be exploited in the scope of register transfer level (RTL) synthesis for enabling its utilization is given in detail. This description is designed to be easily retargetable to single-issue RISC processors, requiring only minimal effort for this task. The ZOLC unit has been incorporated into different RISC processor models and research ASIPs at different abstraction levels (RTL VHDL and ArchC) to provide effective means for low-overhead looping without negative impact to the processor cycle time. Average performance improvements of 25.5 percent and 44 percent are feasible for a set of kernel benchmarks on an embedded RISC and an application-specific processor, respectively. A corresponding 10 percent speedup is achieved on the same RISC for a subset of MiBench applications, not necessarily featuring the examined performance-critical kernels.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内