个性化文献订阅>期刊> Proceedings of the National Academy of Sciences of the United States of America
 

Homolog of tocopherol C methyltransferases catalyzes N methylation in anticancer alkaloid biosynthesis

  作者 Liscombe, DK; Usera, AR; O'Connor, SE  
  选自 期刊  Proceedings of the National Academy of Sciences of the United States of America;  卷期  2010年107-44;  页码  18793-18798  
  关联知识点  
 

[摘要]

Madagascar periwinkle (Catharanthus roseus) is the sole source of the anticancer drugs vinblastine and vincristine, bisindole alkaloids derived from the dimerization of the terpenoid indole alkaloids vindoline and catharanthine. Full elucidation of the biosynthetic pathways of these compounds is a prerequisite for metabolic engineering efforts that will improve production of these costly molecules. However, despite the medical and commercial importance of these natural products, the biosynthetic pathways remain poorly understood. Here we report the identification and characterization of a C. roseus cDNA encoding an S-adenosyl-L-methionine-dependent N methyltransferase that catalyzes a nitrogen methylation involved in vindoline biosynthesis. Recombinant enzyme produced in Escherichia coli is highly substrate specific, displaying a strict requirement for a 2,3-dihydro bond in the aspidosperma skeleton. The corresponding gene transcript is induced in methyl jasmonate-elicited seedlings, along with the other known vindoline biosynthetic transcripts. Intriguingly, this unique N methyltransferase is most similar at the amino acid level to the plastidic gamma-tocopherol C methyltransferases of vitamin E biosynthesis, suggesting an evolutionary link between these two functionally disparate methyltransferases.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内