个性化文献订阅>期刊> SOLAR ENERGY MATERIALS AND SOLAR CELLS
 

Efficient polymer solar cells based on dialkoxynaphthalene and benzo[c][1,2,5]thiadiazole: A new approach for simple donor-acceptor pair

  作者 Kim, SO; Chung, DS; Cha, H; Hwang, MC; Park, JW; Kim, YH; Park, CE; Kwon, SK  
  选自 期刊  SOLAR ENERGY MATERIALS AND SOLAR CELLS;  卷期  2011年95-7;  页码  1678-1685  
  关联知识点  
 

[摘要]We reported the synthesis of novel polymeric semiconductor materials based on [poly(4-(5-(1,5-bis(alkoxy)naphthalen-2-yl)thiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5]-thiadiazole)] (PANTBT) and the fabrication of solar cells with a power conversion efficiency of 4.2% using the synthesized polymers blended with [6,6]-phenyl C(71) butyric acid methyl ester (PC(70)BM) in bulk heterojunction geometry. By varying the side chains, three polymers were synthesized [poly(4-(5-(1,5-bis(2-ethylhexyloxy)naphthalen-2-yl)thiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PENTBT), [poly(4-(5-(1,5-bis(decyloxy)-naphthalen-2-yl)thiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PDNTBT), and [poly(4-(5-(1,5-bis(tetradecyloxy)naphthalen-2-yl)thiophen-2-yl)-7-(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)] (PTDNTBT), maintaining a low highest occupied molecular orbital (HOMO) energy level and relatively low band gap, which lead to a high open circuit voltage and short circuit current of the resulting devices. Due to the superior miscibility of PANTBT derivatives with PC(70)BM, favorable phase separation with a domain size of 10-20 nm was achieved regardless of the crystalline nature of the pristine polymers. PDNTBT with alkyl side chain C10 and PTDNTBT with alkyl side chain C14 showed higher photovoltaic performances. In addition, the effects of the crystalline nature of polymers on the thermal stability of the resulting solar cell devices were discussed in terms of the influence of side chains. (C) 2011 Elsevier B.V. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内