个性化文献订阅>期刊> Journal of controlled release
 

Controlled release of vitamin B-2 using mesoporous materials functionalized with amine-bearing gate-like scaffoldings

  作者 Bernardos, A; Aznar, E; Coll, C; Martinez-Manez, R; Barat, JM; Marcos, MD; Sancenon, F; Benito, A; Soto, J  
  选自 期刊  Journal of controlled release;  卷期  2008年131-3;  页码  181-189  
  关联知识点  
 

[摘要]A study on the controlled release of vitamin B-2 in pure water from mesoporous silica-based materials containing a pH- and anion-controlled nano-supramolecular gate-like ensembles built up by anchoring suitable polyamines on the external surface is reported (solid SI). This solid contains the vitamin (the delivered molecule) onto the pores, whereas the amine-based gate-like ensemble is anchored on the Pore outlets. To obtain solid S1 the mesoporous MCM-41 support was first synthesized using tetraethyl orthosilicate (TEOS) as hydrolytic inorganic precursor and the surfactant hexadecyltrimethylammonium bromide (CTAB) as porogen species. Calcination of the mesostructured phase resulted in the starting solid. Then, first the vitamin and the latter an excess of 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethox-ysilane were added to the suspension containing the MCM-41 scaffolding and stirred. Solid S1 was characterized using standard solid state procedures. It was found that the functionalization process and the inclusion of the vitamin on the pores do not modify the mesoporous structure of the starting material. Delivery studies in water were carried out at pH 2 and 7. At pH 2 all the anions studied (sulfate, phosphate, GMP and ATP) strongly hinder vitamin release (C-anion = 1 X 10(-2) mol dm(-3)), whereas at pH 7 the delivery was observed for sulfate and GMP whereas the gate remained closed in the presence of ATP and phosphate. Selective delivery at neutral pH and no-liberation in acidic conditions can also be controlled with ATP and GMP using a suitable concentration of anion. The remarkable anion-controllable response of the gate-like ensemble at a certain pH can be explained in terms of anion complex formation with the tethered polyamines. Finally, selectivity patterns have been discussed in terms of kinetic rates of vitamin B-2 release. The pH-controlled gate-like scaffoldings on S1 might be a suitable prototype for the development of orally applicable delivery systems designed to have the particular ability to protect the cargo from the acidic conditions of the stomach (acid pH, gate closed) but will release the load at the intestine (basic pH, gate open). (c) 2008 Elsevier B.V. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内