个性化文献订阅>期刊> Journal of Pharmacology and Experimental Therapeutics
 

Cannabinoid Inhibition of Macrophage Migration to the Trans-Activating (Tat) Protein of HIV-1 Is Linked to the CB2 Cannabinoid Receptor

  作者 Raborn, ES; Cabral, GA  
  选自 期刊  Journal of Pharmacology and Experimental Therapeutics;  卷期  2010年333-1;  页码  319-327  
  关联知识点  
 

[摘要]Macrophages and macrophage-like cells are important targets of HIV-1 infection at peripheral sites and in the central nervous system. After infection, these cells secrete a plethora of toxic factors, including the viral regulatory trans-activating protein (Tat). This protein is highly immunogenic and also serves as a potent chemoattractant for monocytes. In the present study, the exogenous cannabinoids delta-9-tetrahydrocannabinol (THC) and (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940) were shown to significantly inhibit migration of human U937 macrophage-like cells to the Tat protein in a concentration-related manner. The CB1 receptor-selective agonist N-(2-chloroethyl)-5Z, 8Z, 11Z, 14Z-eicosatetraenamide (ACEA) had no effect on Tat-mediated migration. In contrast, the CB2 receptor-selective agonist (1R, 3R)-1-[4-(1,1-dimethylheptyl)-2,6-dimethoxyphenyl]-3-methylcyclohexanol (O-2137) exerted a concentration-related inhibition of U937 cell migration in response to Tat. Pharmacological blockage of CB1 receptor signaling using the antagonist 5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide hydrochloride (SR141716A) had no effect on CP55940-mediated inhibition of macrophage migration to Tat, whereas treatment with the CB2 receptor antagonist (1S-endo)-5-(4-chloro-3-methylphenyl)-1-((4-methylphenyl)methyl)-N-(1,3,3-trimethylbicyclo(2.2.1)hept-2-yl)-1H-pyrazole-3-carboxamide (SR144528) reversed the CP55940-mediated inhibition of migration. In addition, THC had no inhibitory effect on U937 migration to Tat after small interfering RNA knockdown of the CB2 receptor. Collectively, the pharmacological and biochemical knockdown data indicate that cannabinoid-mediated modulation of macrophage migration to the HIV-1 Tat protein is linked to the CB2 cannabinoid receptor. Furthermore, these results suggest that the CB2 cannabinoid receptor has potential to serve as a therapeutic target for ablation of HIV-1-associated untoward inflammatory response.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内