个性化文献订阅>期刊> Archives of Biochemistry and Biophysics
 

Rice family GH1 glycoside hydrolases with beta-D-glucosidase and beta-D-mannosidase activities

  作者 Kuntothom, T; Luang, S; Harvey, AJ; Fincher, GB; Opassiri, R; Hrmova, M; Cairns, JRK  
  选自 期刊  Archives of Biochemistry and Biophysics ;  卷期  2009年491-1-2;  页码  85-95  
  关联知识点  
 

[摘要]Plant beta-D-mannosidases and a rice beta-D-glucosidase, Os3BGlu7, with weak P-D-mannosidase activity, cluster together in phylogenetic analysis. To investigate the relationship between substrate specificity and amino acid sequence similarity in family GH1 glycoside hydrolases, Os3BGlu8 and Os7BGlu26, putative rice beta-D-glucosidases from this Cluster, and a beta-D-mannosidase from barley (rHvBII), were expressed in Escherichia coli and characterized. Os3BGlu8, the amino acid sequence and molecular model of which are most similar to Os3BGlu7, hydrolysed 4-nitrophenyl-beta-D-glucopyranoside (4NPGlc) faster than 4-nitrophenyl-beta-D-mannopyranoside (4NPMan), while Os7BGlu26, which is most similar to rHvBII by these criteria, hydrolysed 4NPMan faster than 4NPGlc. All the enzymes hydrolyzed cellooligosaccharides with increased hydrolytic rates as the degree of polymerization increased from 3-6, but only rHvBII hydrolyzed cellobiose with a higher k(cat)/K-m value than cellotriose. This was primarily due to strong binding of glucosyl residues at the +2 subsite for the rice enzymes, and unfavorable interactions at this subsite with rHvBII. (C) 2009 Elsevier Inc. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内