个性化文献订阅>期刊> Journal of Molecular Biology
 

Unperturbing a Non-Helically Perturbed Bacterial Flagellar Filament: Salmonella typhimurium SJW23

  作者 Nisani-Bizer, K; Trachtenberg, S  
  选自 期刊  Journal of Molecular Biology;  卷期  2012年416-3;  页码  367-388  
  关联知识点  
 

[摘要]Salmonella typhimurium SJW23 has a right-handed, non-helically perturbed filament of serotype gt with a unique surface pattern. Non-helical perturbations involve symmetry reduction along the five-start helical lines resulting in layer lines of fractional Bessel orders and a consequent seam. The flagellin gene, fliC(23), which we sequenced, differs from the sequence of the canonic, plain SJW1655 flagellin, fliC(1655). We modified discrete components of fliC(23) in order to localize, in the expressed filament, the submolecular site responsible for the non-helical perturbation. These modifications include (i) deleting the outermost domain D3(23), (ii) replacing D323 with D3(1655). (iii) substituting a hydrophilic a-helix at the interface between the neighboring domains D1 and D2 with a hydrophobic one from fliC(1655), and (iv) substituting a serine/glycine pair in the loop connecting the modified a-helix to its neighbor; these modifications were made in the presence and absence of D3(23). We used S. typhimurium SJW1655 both as a reference and as a source for 'spare parts'. The symmetry of the constructs was assessed from the power spectra through changes in the layer lines at a height of < 1/105 > and < 1/35 > angstrom(-1), unique to the non-helical perturbation. Deleting D3(23), either alone or in combination with various substitutions, or replacing it with D3(1655) transforms the non-helically perturbed filament into a plain one as judged by the disappearance of the typical layer lines from the power spectra. We conclude that the non-helical perturbation is a product of unique interactions in the D3(23) density shell. Whereas other minor structural changes may occur at the filaments interior, they are all helically symmetric. (C) 2012 Elsevier Ltd. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内