个性化文献订阅>期刊> IEEE Sensors Journal
 

New Memory Architecture for Rolling Shutter Wide Dynamic Range CMOS Imagers

  作者 Sandhu, TS; Pecht, OY  
  选自 期刊  IEEE Sensors Journal;  卷期  2012年12-4;  页码  767-772  
  关联知识点  
 

[摘要]In this work, the concept of reusing a memory location to significantly reduce the overall memory size for storing wide dynamic range (WDR) information in rolling shutter active pixel sensors (APSs) is discussed. At the high light level, WDR is achieved via multiple-resets and real time feedback, allowing a pixel to independently set its integration period as per its ambient light level. Traditionally these WDR bits are stored in a dedicated memory location for every pixel. We propose a new memory architecture which, in principal, is similar to time division multiplexing, such that it achieves memory size reduction by sharing a single memory location among a number of pixels as a function of time. The proposed architecture is ideally suited for rolling shutter APS, where each row is processed sequentially in time. Compared to a commonly used memory design, the proposed architecture becomes increasingly efficient as the pixel count increases, resulting in momentous savings in memory chip area and leakage power consumption. For a pixel array of 128 128, only 14.2% of the commonly used memory bits are required, when using 7 WDR bits per pixel. This requirement reduces to 8.3% of the commonly used memory bits for a pixel array size of 4096 4096, rendering the purposed architecture particularly efficient for larger arrays. The savings in leakage power will track the corresponding savings in memory size and area especially for newer technologies. The purposed concept has been verified in design and simulation for a 128 128 pixel array, fabricated in 180 nm technology.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内