个性化文献订阅>期刊> ENERGY & FUELS
 

Measurements and Modeling Study on a High-Aromatic Diesel Fuel

  作者 Windom, B. C.; Huber, M. L.; Bruno, T. J.; Lown, A. L.; Lira, C. T.  
  选自 期刊  ENERGY & FUELS;  卷期  2012年26-3;  页码  1787-1797  
  关联知识点  
 

[摘要]The increasing cost of diesel fuel, potential for supply disruptions, and environmental concerns have resulted in a great deal of research to improve the performance and efficiency of diesel engines. This includes significant efforts in the reformulation of conventional diesel fuels and the development of renewable diesel fuels. An integral part of work on diesel fuels has been the measurement and modeling of the thermophysical properties of the fuels; this knowledge is critical to effective design and application. In this paper, we present the development of a model for thermodynamic and transport properties for a conventional diesel fuel based on our measurements of chemical composition, density, viscosity, and volatility. This information, along with the cetane number and heat of combustion, was used to develop surrogate mixture models. The models contain constituent fluids representative of those found in the fuel and were designed to represent thermophysical properties (density, viscosity, and volatility) and also the heat of combustion and cetane number. Comparisons (calculated with the surrogate models) to limited density and viscosity experimental data are within 0.6 and 2%, respectively. The model represents the cetane number of the fuel to within 2 cetane numbers and the heat of combustion to within 5%. The volatility behavior, indicated by the temperatures obtained from the advanced distillation curve method, is reproduced to within 0.5%.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内