个性化文献订阅>期刊> Development
 

Cell cycle progression is required for zebrafish somite morphogenesis but not segmentation clock function

  作者 Zhang, LX; Kendrick, C; Julich, D; Holley, SA  
  选自 期刊  Development;  卷期  2008年135-12;  页码  2065-2070  
  关联知识点  
 

[摘要]Cell division, differentiation and morphogenesis are coordinated during embryonic development, and frequently are in disarray in pathologies such as cancer. Here, we present a zebrafish mutant that ceases mitosis at the beginning of gastrulation, but that undergoes axis elongation and develops blood, muscle and a beating heart. We identify the mutation as being in early mitotic inhibitor 1 (emi1), a negative regulator of the Anaphase Promoting Complex, and use the mutant to examine the role of the cell cycle in somitogenesis. The mutant phenotype indicates that axis elongation during the segmentation period is driven substantially by cell migration. We find that the segmentation clock, which regulates somitogenesis, functions normally in the absence of cell cycle progression, and observe that mitosis is a modest source of noise for the clock. Somite morphogenesis involves the epithelialization of the somite border cells around a core of mesenchyme. As in wild-type embryos, somite boundary cells are polarized along a Fibronectin matrix in emi1(-/-). The mutants also display evidence of segment polarity. However, in the absence of a normal cell cycle, somites appear to hyper-epithelialize, as the internal mesenchymal cells exit the core of the somite after initial boundary formation. Thus, cell cycle progression is not required during the segmentation period for segmentation clock function but is necessary for the normal segmental arrangement of epithelial borders and internal mesenchymal cells.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内