个性化文献订阅>期刊> BIOMATERIALS
 

Simulation of the in vivo resorption rate of beta-tricalcium phosphate bone graft substitutes implanted in a sheep model

  作者 Bashoor-Zadeh, M; Baroud, G; Bohner, M  
  选自 期刊  BIOMATERIALS;  卷期  2011年32-27;  页码  6362-6373  
  关联知识点  
 

[摘要]A few years ago, a model was proposed to predict the effect of the pore architecture of a bone graft substitute on its cell-mediated resorption rate. The aim of the present study was to compare the predictions of the model with the in vivo resorption rate of four beta-tricalcium phosphate bone graft substitutes implanted in a sheep model. The simulation algorithm contained two main steps: (1) detection of the pores that could be accessed by blood vessels of 50 mu m in diameter, and (2) removal of one solid layer at the surface of these pores. This process was repeated until full resorption occurred. Since the pore architecture was complex, mu CT data and fuzzy imaging techniques were combined to reconstruct the precise bone graft substitute geometry and then image processing algorithms were developed to perform the resorption simulation steps. The proposed algorithm was verified by comparing its results with the analytical results of a simple geometry and experimental in-vivo data of beta-TCP bone substitutes with more complex geometry. An excellent correlation (r(2) > 0.9 for all 4 bone graft substitutes) was found between simulation results and in-vivo data, suggesting that this resorption model could be used to (i) better understand the in vivo behavior of bone graft substitutes resorbed by cell-mediation, and (ii) optimize the pore architecture of a bone graft substitute, for example to maximize its resorption rate. (C) 2011 Elsevier Ltd. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内