个性化文献订阅>期刊> BIOMATERIALS
 

The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds

  作者 Zhao, HX; Dong, WJ; Zheng, YY; Liu, AP; Yao, JM; Li, CR; Tang, WH; Chen, BY; Wang, G; Shi, Z  
  选自 期刊  BIOMATERIALS;  卷期  2011年32-25;  页码  5837-5846  
  关联知识点  
 

[摘要]Hydroxyapatite-modified titanate nanowire scaffolds as alternative materials for tissue engineering have been developed via a titanate nanowire matrix assisted electrochemical deposition method. The macroporous titanate nanowire matrix on Ti metal was fabricated by a hydrothermal method, and then followed by an electrochemical synthesis of hydroxyapatite nanoparticles on titanate nanowire. The incorporation of titanate nanowire matrix with high oriented hydroxyapatite nanoparticles generates hierarchical scaffolds with highly osteogenic, structural integrity and excellent mechanical performance. As-prepared porous three dimensional interconnected hydroxyapatite-modified titanate nanowire scaffolds, mimicking the nature's extracellular matrix, could provide a suitable microenvironment for tissue cell ingrowth and differentiation. The ceramic titanate nanowire core with HA nanoparticle sheath structure displays superhydrophilicity, which facilitates the cell attachment and proliferation, and induces the in vitro tissue-engineered bone. Human osteoblast-like MG63 cells were cultured on the hydroxyapatite-modified titanate nanowire scaffolds, and the results showed that the scaffolds highly promote the bioactivity, osteoconductivity and osteoblast differentiation. (C) 2011 Elsevier Ltd. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内