个性化文献订阅>期刊> BIOMATERIALS
 

pH-controlled recovery of placenta-derived mesenchymal stem cell sheets

  作者 Guillaume-Gentil, O; Semenov, OV; Zisch, AH; Zimmermann, R; Voros, J; Ehrbar, M  
  选自 期刊  BIOMATERIALS;  卷期  2011年32-19;  页码  4376-4384  
  关联知识点  
 

[摘要]Widely used in different biomedical applications, polyelectrolyte multilayers provide inter alia an attractive way for manufacturing of bio-functionalized, stimuli responsive surface coatings to control cellular behavior. In this study a novel polyelectrolyte-based platform for the engineering and controllable detachment of human mesenchymal stem cell (MSC) sheets is presented. Thin films obtained by layer-by-layer deposition of cationic poly(allylamine hydrochloride) (PAH) and anionic poly(styrene sulfonate) (PSS) polyelectrolytes on conductive indium tin oxide (ITO) electrodes allowed for the fast formation of viable sheets from human placenta-derived mesenchymal stem cells (PD-MSCs). Resulting stem cell sheets retained their phenotypical profile and mesodermal differentiation potency. Both electrochemically-induced local pH lowering and global decrease of the environmental pH allowed for a rapid detachment of intact stem cell sheets. The recovered stem cell sheets remained viable and maintained their capacity to differentiate toward the adipogenic and osteogenic lineages. This novel polyelectrolyte multilayer based platform represents a promising, novel approach for the engineering of human stem cell sheets desired for future clinical applications. (C) 2011 Elsevier Ltd. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内