个性化文献订阅>期刊> Gene
 

Identification of genes involved in the butyrolactone autoregulator cascade that modulates secondary metabolism in Streptomyces lavendulae FRI-5

  作者 Kitani, S; Iida, A; Izumi, TA; Maeda, A; Yamada, Y; Nihira, T  
  选自 期刊  Gene;  卷期  2008年425-1-2;  页码  9-16  
  关联知识点  
 

[摘要]The gamma-butyrolactone-autoregulator signalling system is widely distributed across many Streptomyces species and it controls secondary metabolism and/or morphological differentiation. IM-2 [(2R,3R,1'R)-2-1'-1hydroxy butyl-3-hydroxymethyl-gamma-butanolide] is a gamma-butyrolactone autoregulator which, in Streptomyces lavendulae FRI-5, switches off the production of D-cycloserine, but switches on the production of several nucleoside antibiotics and blue pigment. In the IM-2 system, an IM-2 specific receptor (FarA) plays a critical role in the biosynthetic regulation of these metabolites, including IM-2 itself. Here, we identified five additional regulatory genes in the farA-flanking region and demonstrated that, in addition to farA, at least two more genes (farR1 and farR2) are involved in the IM-2/FarA system as the direct transcriptional target of FarA. The gel-shift assay revealed that FarA was bound to the upstream region of the four genes (including farR1 and farR2) in an IM-2-dependent manner. The FarA-binding sites were localized by DNase I footprinting to 27- to 33-bp palindromic structures, suggesting that FarA-binding sequences consist of two conserved hexamers separated by six nucleotides. Both farR1 and farR2 were transcribed in a growth-dependent manner, and marked expression was induced in the presence of IM-2, whereas transcripts of other two genes were not detected under the cultivation conditions used. The FarA-binding sites of farR1 and far2 overlap the promoter regions, suggesting that FarA represses the transcription of these two genes in the absence of IM-2 by inhibiting RNA polymerase access. (c) 2008 Elsevier B.V. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内