个性化文献订阅>期刊> European Journal of Cell Biology
 

Cyclic stretch induces reorientation of cells in a Src family kinase- and p130Cas-dependent manner

  作者 Niediek, V; Born, S; Hampe, N; Kirchgessner, N; Merkel, R; Hoffmann, B  
  选自 期刊  European Journal of Cell Biology;  卷期  2012年91-2;  页码  118-128  
  关联知识点  
 

[摘要]Recognition of external mechanical signals by cells is an essential process for life. One important mechanical signal experienced by various cell types, e.g. around blood vessels, within the lung epithelia or around the intestine, is cyclic stretch. As a response, many cell types reorient their actin cytoskeleton and main cell axis almost perpendicular to the direction of stretch. Despite the vital necessity of cellular adaptation to cyclic stretch, the underlying mechanosensory signal cascades are far from being understood. Here we show an important function of Src-family kinase activity in cellular reorientation upon cyclic stretch. Deletion of all three family members, namely c-Src, Yes and Fyn (SYF), results in a strongly impaired cell reorientation of mouse embryonic fibroblasts with an only incomplete reorientation upon expression of c-Src. We further demonstrate that this reorientation phenotype of SYF-depleted cells is not caused by affected protein exchange dynamics within focal adhesions or altered cell force generation. Instead, Src-family kinases regulate the reorientation in a mechanotransduction-dependent manner, since knock-down and knock-out of p130Cas, a putative stretch sensor known to be phosphorylated by Src-family kinases, also reduce cellular reorientation upon cyclic stretch. This impaired reorientation is identical in intensity upon mutating stretch-sensitive tyrosines of p130Cas only. These statistically highly significant data pinpoint early events in a Src family kinase- and p130Cas-dependent mechanosensory/mechanotransduction pathway. (C) 2011 Elsevier GmbH. All rights reserved.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内