个性化文献订阅>期刊> Macromolecules
 

Properties and Semicrystalline Structure Evolution of Polypropylene/Montmorillonite Nanocomposites under Mechanical Load

  作者 Stribeck, N; Zeinolebadi, A; Sari, MG; Botta, S; Jankova, K; Hvilsted, S; Drozdov, A; Klitkou, R; Potarniche, CG; Christiansen, JD; Ermini, V  
  选自 期刊  Macromolecules;  卷期  2012年45-2;  页码  962-973  
  关联知识点  
 

[摘要]Small-angle X-ray scattering (SAXS) monitors tensile and load-cycling tests of metallocene isotactic polypropylene (PP), a blend of PP and montmorillonite (MMT), and two block copolymer compatibilized PP/MMT nanocomposites. Mechanical properties of the materials are similar, but the semicrystalline nanostructure of the PP differs. This is explained by a nucleation effect of the MMT. Competitive crystal growth diminishes crystallite sizes. The reinforcing effect of the MMT filler appears consumed by weakening the PP matrix. Decays of mechanical and nanostructure response in dynamic load cycling indicate materials fatigue. Lifetimes describe the reinforcing and weakening effects. Addition of 3% MMT halves the fortifying effect of the PP nanostructure. A net gain of reinforcement (11%) is observed with the highly compatibilized composite in which the strength of the semicrystalline PP is reduced to 25%. Other results concern the evolution of Strobl's block structure and void formation during tensile loading.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内