个性化文献订阅>期刊> International Journal of Cancer
 

Selective concomitant inhibition of mTORC1 and mTORC2 activity in estrogen receptor negative breast cancer cells by BN107 and oleanolic acid

  作者 Chu, R; Zhao, XY; Griffin, C; Staub, RE; Shoemaker, M; Climent, J; Leitman, D; Cohen, I; Shtivelman, E; Fong, S  
  选自 期刊  International Journal of Cancer;  卷期  2010年127-5;  页码  1209-1219  
  关联知识点  
 

[摘要]Hormonal, targeted and chemotherapeutic strategies largely depend on the expression of their cognate receptors and are often accompanied by intolerable toxicities. Effective and less toxic therapies for estrogen receptor negative (ER-) breast cancers are urgently needed. Here, we present the potential molecular mechanisms mediating the selective pro-apoptotic effect induced by BN107 and its principle terpene, oleanolic acid (OA), on ER- breast cancer cells. A panel of breast cancer cell lines was examined and the most significant cytotoxic effect was observed in ER- breast lines. Apoptosis was the major cellular pathway mediating the cytotoxicity of BN107. We demonstrated that sensitivity to BN107 was correlated to the status of ER alpha. Specifically, the presence of functional ER alpha protected cells from BN107-induced apoptosis and absence of ER alpha increased the sensitivity. BN107, an extract rich in OA derivatives, caused rapid alterations in cholesterol homeostasis, presumably by depleting cholesterol in lipid rafts (LRs), which subsequently interfered with signaling mediated by LRs. We showed that BN107 or OA treatment in ER- breast cancer cells resulted in rapid and specific inhibition of LR-mediated survival signaling, namely mTORC1 and mTORC2 activities, by decreasing the levels of the mTOR/FRAP1, RAPTOR and RICTOR. Cotreatment with cholesterol abolished the proapoptotic effect and restored the disrupted mTOR activities. This is the first report demonstrating possible concomitant inhibition of both mTORC1 and mTORC2 activities by modulating the levels of protein constituents present in these signaling complexes, and thus provides a basis for future development of OA-based mTOR inhibitors.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内