个性化文献订阅>期刊> Journal of Biological Chemistry
 

Structural Insights into Apoptotic DNA Degradation by CED-3 Protease Suppressor-6 (CPS-6) from Caenorhabditis elegans

  作者 Lin, JLJ; Nakagawa, A; Lin, CL; Hsiao, YY; Yang, WZ; Wang, YT; Doudeva, LG; Skeen-Gaar, RR; Xue, D; Yuan, HNS  
  选自 期刊  Journal of Biological Chemistry;  卷期  2012年287-10;  页码  7110-7120  
  关联知识点  
 

[摘要]Endonuclease G (EndoG) is a mitochondrial protein that traverses to the nucleus and participates in chromosomal DNA degradation during apoptosis in yeast, worms, flies, and mammals. However, it remains unclear how EndoG binds and digests DNA. Here we show that the Caenorhabditis elegans CPS-6, a homolog of EndoG, is a homodimeric Mg2+-dependent nuclease, binding preferentially to G-tract DNA in the optimum low salt buffer at pH7. The crystal structure of CPS-6 was determined at 1.8 angstrom resolution, revealing a mixed alpha beta topology with the two beta beta alpha-metal finger nuclease motifs located distantly at the two sides of the dimeric enzyme. A structural model of the CPS-6-DNA complex suggested a positively charged DNA-binding groove near the Mg2+-bound active site. Mutations of four aromatic and basic residues: Phe(122), Arg(146), Arg(156), and Phe(166), in the protein-DNA interface significantly reduced the DNA binding and cleavage activity of CPS-6, confirming that these residues are critical for CPS-6-DNA interactions. In vivo transformation rescue experiments further showed that the reduced DNase activity of CPS-6 mutants was positively correlated with its diminished cell killing activity in C. elegans. Taken together, these biochemical, structural, mutagenesis, and in vivo data reveal a molecular basis of how CPS-6 binds and hydrolyzes DNA to promote cell death.

 
      被申请数(0)  
 

[全文传递流程]

一般上传文献全文的时限在1个工作日内